
P H Y S I C A L R E V I E W V O L U M E 1 3 0 , N U M B E R 6 15 J U N E 1 9 6 3 

Limiting Critical Field in Thin Superconductors* 
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The Ginzburg-Landau theory has been formulated in a proper form to include the magnetization effect 
due to penetration of the magnetic field within the superconductor. Modified Ginzburg-Landau equations 
were obtained and solved for the case of thin films and filaments in vacuo or imbedded in normal material. 
The resulting expressions describe the behavior of the critical field of thin films and filaments as functions 
of thickness and temperature. They reduce to Clogston's critical field in the limit of vanishing thickness. 
They also provide a simple criterion for distinguishing between different types of the superconducting-
normal transitions. 

I. INTRODUCTION 

IN this paper the Ginzburg-Landau1 (GL) phenome-
nological theory of superconductivity is reformu­

lated in proper thermodynamic integral form so as to 
include the magnetization energy due to penetration of 
the external magnetic field inside the superconductor. 
The requirement that the thermodynamic potential of a 
system in equilibrium be a minimum leads to a nonlinear 
pair of GL equations which include the magnetization 
effect of the external magnetic field. This pair of equa­
tions is then solved, approximately, for cases of thin 
superconducting filaments and laminas in vacuo or 
imbedded in a normal material. The error involved in 
this approximation is indicated. 

The existence of superconducting regions in hard 
superconductors in the presence of very high fields has 
led to a renewed theoretical interest2,3 in the maxi­
mum obtainable critical field. BCS (Bardeen-Cooper-
Schrieffer) theory, while explaining the nature of the 
superconducting phenomenon, treats superconductors 
of infinite extent and cannot be easily applied to solution 
of the boundary-value problems. As the dimensions of 
the superconducting body decrease, the importance of 
the surface energy terms increase, until even the order of 
the superconducting-normal transition in a magnetic 
field is changed from that of a bulk body.1,4 

Derivation of the behavior of the critical field of a 
superconducting body as function of its dimensions in­
volves the solution of a boundary value problem which 
is handled best within a phenomenological theory. But, 
so far, the derivation of such behavior has been ham­
pered by the divergence of the corresponding theoretical 
expressions in the limit of vanishing thickness. The best 
developed phenomenological theories of superconduc­
tivity of London and London5 and of Ginzburg-Landau1 

both seem to predict an infinite critical field for vanish-
ingly thin superconductors. Physically, this is due to the 
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penetration of the field within the superconductor with 
corresponding lowering of the diamagnetic energy term. 
Yet, once the penetration of the external field becomes 
appreciable, we have to consider the difference in free 
energies between the superconducting and the normal 
states due to magnetization of the superconducting 
body.6,7 Neither the Londons nor GL have considered 
this magnetization term, which finally prevents the 
critical field from growing indefinitely as the charac­
teristic dimension of a specimen approaches zero. 

In the following, this magnetization term is included 
in a systematic manner in the GL theory. The modified 
GL equations are solved for thin films and filaments. 
These solutions are then used to bridge the gap between 
the limiting expressions for the critical field of thin 
specimens as obtained by general thermodynamic argu­
ments7,8 and those given by the London and GL 
theories.2,3 The magnetostriction of a superconducting 
body has been neglected as insignificant. 

II. THERMODYNAMIC RELATIONS 

It has been shown previously9 that during an iso­
thermal process in equilibrium in a magnetic field the 
following thermodynamic potential must have a 
minimum: 

cj>(TyH) = E-TS 
4irJv 

B-H<A (1) 

where E is the internal energy of the body, 5 the 
entropy, B the actual magnetic induction, and H0 the 
magnetic field intensity in absence of the body. The 
integral on the right-hand side of (1) is taken over the 
entire space. 

Consider now a superconducting body. Denoting by 
subscripts s and n superconducting and normal states, 
and by subscripts h and 0 the presence or absence of an 
external magnetic field, we may write the GL expres-
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sions3,9 for the E— TS term as 

E-TS= 

where 

and 

/ Fshdv, 
J v 
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The expansion for Fso in terms of the order parameter 
\\p\2 was obtained from general considerations of the 
second-order transitions. The Fsh term describes the 
effect of penetration of the magnetic field into the 
superconducting body. Employing (2), Eq. (1) may be 
rewritten as : 

*.(T,H): = f (Fn0+a\rf/\*+-\t\* 

+-Am 

2e 
— ifiVxf/ ^ A 

c 

2 B2 B H 0 \ 
+ W (3) 
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Since in equilibrium </>s has a minimum, (3) may be 
varied with respect to ^* and A to obtain the equilib­
rium values of \p and A. By varying (3) with respect to 
\p*y leaving the boundary conditions free, we get 

6tf>s/5tA* = 0 
provided 

V^ = ̂ 2 ( -^+ |^ | ^+^ 2 )+2^A-V^ (4a) 
and 

n - ( V ^ - ^ A ^ ) = 0 on S, (4b) 

where S is a surface bounding the superconductor and n 
is a unit, vector, normal to S. In (4) we have introduced 
the GL parameter k = k(T), which depends on the 
properties of the material in bulk, and have performed 
the GL normalization as modified by Bardeen.1'10 

We obtain an equation for A by varying (3) with re­
spect to A subject to the condition that V-A=0 and 
subject to the constraint of fixed boundary conditions 
(nX5A=0 on S): 

—=0 if V2A=—(^*V^-^*)+/zM2A 
8A 2k 

for B = V X A , (5) 

where again the GL normalization has been performed. 
In the following, we shall consider the critical field of 

infinite superconducting laminas and circular filaments. 
Laminas or filaments may be imbedded in normal ma­
terial or in vacuo. In either case we are dealing with 
shapes which have a demagnetizing factor equal to 

10 J. Bardeen, Rev. Mod. Phys. 34, 667 (1962). 

zero. Therefore, we m a y wr i te (3) as 

<t>s—<l>n Mn—Ms l r r 0 
= H0

2+- aiMH~|* 
V ST VJVL 2 

+-
2e >2 

—ifiVx// ^ A 
c 

+-(Ho-H)2~L, (6) 
8TT J 

where the integrals now are taken only over the volume 
of the body. We consider thicknesses small enough to 
exclude metastable states. Then at the transition point, 
as Ho is raised to the critical value Hc, when transition 
takes place at constant temperature the left-hand side 
of (6) reduces to zero. 

We proceed now to evaluate integrals on the right-
hand side (6). 

III. THIN FILM 

Consider now the one-dimensional problem of a thin 
superconducting film, extending from — d<z<+d, and 
infinite in x and y directions. Let a uniform magnetic 
field due to external sources (Ho) be directed along the 
y axis. The vector potential A and the superconducting 
current j will then have only x components and be 
functions of z only. Considering the z components of 
(5), we conclude that yp must necessarily be real. Thus, 
we may write (4) and (5) in this case as 

A"=»4?A, A'(±d) = B0, (7a) 

^=^(-^+^8+^2)^ y (±rf) = 0. (7b) 

Except for a JJLS factor in Eq. (7) for A, this set of 
second-order, third-degree equations is the same as that 
given in reference 1. This set is most commonly solved 
by setting & = 0. An approximate solution for JJ,8=1, 
k^O was given by GL,1 but their method of solution did 
not permit the error involved to be estimated. To 
circumvent this limitation of the GL method, we resort 
rather to a series method of solution. 

Le t t ing \//(z)=\(/o+<p(z), \f/(0)=\poy a n d using t h e 
series me thod , we get 

Bo s inh(as) 
A = +0(z*d2), 

a cosh (ad) 
(8a) 

<p(z)=-
MW-V 

-l 
[cosh (/>£) — 1]-+ 

2*ok2Bo2 

3\f/0' 

X [ c o s h ( g z ) - l ] 

g4 cosh2 (ad) 

hk2B0
2z2 

0(zH2), 
q2 cosh2 (ad) 

a2 = / ^ 0
2 , p2 = k2(3f o2~l), q2 = p2+4a\ 

T h e de te rminan ta l equa t ion for \f/0 is given b y 

(8b) 

<Ao2-l = 
q2 cosh2 (ad) W)L 

sinh(^d)" 

qd 

pd 

sinh (pd) 
-0(d*). (9) 
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All quantities in the Eqs. (8) and (9) are normalized. 
Equation (8) is similar to Eq. (58) of reference 1, but 
does not reduce to it for /*«= 1. Equation (9) reduces to 
Eq. (59) of reference 1 only for jus= 1, k — 0. 

With the aid of the above solutions for cp and A, 
integrals in Eq. (6) may now be evaluated: 

H2 W(2-W)+0(d*) 

Hcb
2 M»-M.+M.{l-[taiihO*.1/Vorf/«)]//*.1/Voi/«} 

(10) 

where Hcb is the critical field for a bulk sample and 5 is 
the small field penetration depth obtained from its 
London value and the data of reference 11. For & = 0, 
Ms = Mn=:l, the above equation reduces to the corre­
sponding GL expression for Hc which diverges as the 
thickness of the film approaches zero. Knowledge of the 
bulk parameters of the materials as a function of tem­
perature permits us, within the indicated error, to solve 
Eqs. (9) and (10) to obtain the critical field of thin films 
as a function of thickness and temperature. 

We may also notice that at any temperature 
lim^o2= 1. Therefore, 
d-*0 

Hi 
l im-
d^Hcb

2 47 r (X n -X s ) 

This result is independent of the temperature region of 
validity of the GL theory, and may be obtained directly 
from (6). 

IV. THIN CYLINDRICAL FILAMENT 

Consider now a thin infinitely long superconducting 
cylinder with its center on the z axis and its generating 
line parallel to the z axis. In this case, the vector po­
tential A and superconducting current j will have only <p 
components and will be functions of r only. Considering 
again r components of Eq. (5) we again conclude that yp 
may be chosen real. For real ^, Eqs. (4) and (5) in 
cylindrical coordinates become 

d2A 1 dA 1 

dr2 r dr r2 

1 d 
-—(rA)\r=rQ= 
r dr 

Bo, (12a) 

dfy 1 # # 

dr dr dr 
= 0. (12b) 

Since we expect A and \p to be finite at the origin we 
exclude the possibility of modified Bessel functions of 
the second kind appearing in the solutions for A and \[/. 
Therefore, the series method is again applicable. Solving 

11 D. H. Douglass, Jr., Phys. Rev. 124, 735 (1961). 

the system (12) we get 

*M = lM-*(r), *(0) = *o, 

BoIi(ar) 
A = -

<p(r) = -

aIo(aro) 

3 i A o 2 - l 

fO(rW), 
(13a) 

l7o(*r)-l> 
toVBo2 

*ok2Bo2r2 

X [Jo (qr) -1]+ +Q(rW), (13b) 
4g2/0

5Vo) 

with the determinantal equation for ^oas 

-1 
tiff T iiWon Pro 

= 1 - 2 
q2lo2(aro)L qr0 J2Ii(pr0) 

-OW), (14) 

where the definition of a, q, and p is the same as above 
and all quantities are GL normalized. As before, this 
solution immediately enables us to calculate the inte­
grals in (6), yielding 

HJ W(2-W)+O(r0«) 

(11) ^c&2 Vn—MS+M*[1 — 2Ii(ar0/5)/ (aro/5)Io(aro/8)~] 
(15) 

Knowledge of the bulk critical field and the small field 
penetration depth (5), permits simultaneous solution of 
the (14) and (15). This solution expresses the critical 
field of the filament function of temperature and radius. 

Again, since limî o2 = 1, we obtain for any temperature. 
ro->0 

Hi 1 
lim-
^ H c h

2 4 T T ( X W - X S ) 

V. DISCUSSION 

(16) 

The description of the fields outside a singly con­
nected bulk superconducting body is considerably sim­
plified if we assign to the body the equivalent external 
values Ms=0, XS= —1/47T. However, these equivalent 
values do not reflect the actual relation between B and 
H inside the superconductor. Relations, formally similar 
to our Eqs. (11) and (16), but using equivalent X8, have 
been given in the literature previously [see Eq. (2.15), 
reference 10]. As is clear from Sec. II, our Xs equals the 
normal susceptibility, modified by the removal of some 
of the electrons into a superconducting paired state. Our 
Xs never reduces to — 1/47T inside a bulk superconducting 
body. 

If we assume: (a) that the change in susceptibility 
between the normal and superconducting states is due 
to free electrons only; (b) use the BCS expression for 
superconducting susceptibility12 (Xs=0 at 7,= 0); (c) 

12 K. Yosida, Phys. Rev. 110, 769 (1958); A. A. Abrikosov and 
L. P. Gorkov, Zh. Eksperim. i Teor. Fiz. 39, 480 (1960) [trans­
lation: Soviet Phys.—JETP 12, 337 (1961)]. 
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take the Pauli spin susceptibility for the susceptibility 
of the normal state, XP=2JJLB

2N(0), and eliminate the 
density of states at Fermi level N(0) by use of the BCS13 

expression Beb(T=0)=l.7S[4^N(0)J/2kTc) then (11) 
for films and (16) for filaments in the limit as r0, 
d approach zero and at zero temperature, both yield 
Clogs ton's limiting relation,1 

Hc0=Hch(4:TXP)-w= \.1Sk^J2ixB)~lTc^ 18 400rc , 

where Hco is the critical magnetic field in gauss at 0°K 
and Tc is the critical temperature in zero field. The above 
theory does not substantiate the limiting expression* 
HcQ=26 000Tc. 

Equations (11) and (16) show that Clogs ton's limit­
ing relation follows rigorously from the GL theory even 
when the surface energy term is taken into account. 

We may also expand (9) and (10), and also (14) and 
(15), for small r0/d and d/5, keeping in the expansion 
terms up to a second order only, obtaining 

(Hc
2) filament 1 

= — (17) 
Hcb

2 lJLn — IJis+fJLsW/Sd2 

and 
(ffc2)film 1 

= — . (18) 
Hcb

2 Hn — fJLs+lJls2d2/382 

Setting /xw=/z s=l, we obtain the divergent expres­
sions for the critical field of films and filaments previ­
ously discussed by Hauser and Helfand.3 The arguments 
of Hauser and Helfand bearing on the relative stability 
of the filamentary versus laminar structure still apply 
here. Though as r0 and d simultaneously approach zero, 
films and filaments go to the limit of the same critical 
field, Eqs. (17) and (18) show that for r0 equal to d, 
different from zero, the critical field of a filament is 
larger than that of the film: 

5i,2d2(H2)mm 
(Hc

2) filament— (#c2)film = > 0 , 
2^(fXn-fXs)d

2+3fJis
2d2 

making the filamentary structure more stable. The 
laminar structure as the critical field of a film is reached 
will not go directly into the normal state but break into 
a filamentary one. Previous discussions3 of the structure 
of the intermediate state involved consideration of the 
critical field of films and filaments in vacuo. Due to 
formulation of the problem in the proper integral form 
it is possible to discuss the intermediate state directly. 
The above results apply to a filament or a film imbedded 
in the normal material, so long as the field at the surface 

13 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 
1175 (1957). 

of the film or filament may be considered uniform. In 
this case, the external field should be interpreted as the 
magnetic field that would exist at the surface of the film 
or filament if the entire body were in the normal state. 

To obtain the temperature dependence of the critical 
field of filamentary structure let us: (a) approximate in 
the (17) the Yosida's susceptibility12 by a parabola 
Xs/Xn=t2; (b) use the BCS13 expression 52=50

2(2-t)/ 
2(1 — t); and (c) employ HCh=Ho(\ — t2), where t is the 
reduced temperature, to get 

a(l+t)(2-3t+t2)V2 

TT 

[i+fo(i-0]1 / 2 ' 
(19) 

250#o 16TIVX„ 

(M*%2+327r5o2Xn)1/2' M.W+32irfo2X»' 

If we pass a parabola Hp= const(1 —/2) through the 
points t=l and t=ti>% on the critical field curve of 
Eq. (19), we find that for any / less than tl7 Hp is larger 
than Hc. 

On the other hand, for a number of alloys14 (Nb3Sn, 
Mo—Re, etc.), Hc follows a straight line over a wide 
range of temperatures and Hc (alloy) is larger than 
Hp. Such a straight line is best approximated by 
constXHCb(t)/d(t) or constXHCb(t)/&(t)1/2, which would 
require the appearance of 1/r2 or \/r terms in our solu­
tion for yp(r). These terms were excluded from our 
solution by the requirement that \//(r) be finite within 
the superconducting region, but would enter, provided 
the point r equals to zero is outside the superconducting 
region, i.e., normal. Behavior such that Hc is larger than 
Hp, therefore, requires for its explanation a vortex-type 
Abrikosov15 structure. 

A quick glance at the critical field versus temperature 
curve thus permits us to tell whether the critical field is 
due to superconducting filaments, structureless transi­
tion, or flux filaments depending on the critical field 
values being below, on, or above the parabola fitted 
through the first few points around Tc. 

In summary we have: (a) formulated the problem in 
the proper integral form, (b) obtained and solved the 
GL equations, including the magnetization effect, (c) 
derived the result that the filamentary structure of the 
intermediate state is more stable than the laminar one, 
(d) substantiated Clogston's value of the limiting criti­
cal field, (e) discussed the behavior of the critical field 
as function of temperature for different types of fila­
mentary structures of the intermediate state, and (f) ob­
tained a criterion for easy identification of these 
filamentary states. 

14 J. E. Kunzler, Rev. Mod. Phys. 33, 501 (1961). 
15 A. A. Abrikosov, Zh. Eksperim. i Teor. Fiz. 32, 1442 (1957) 
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